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Abstract

This paper presents a novel strategy for solving discrete Boltzmann equation (DBE) for simulation of fluid flows.

This strategy splits the solution procedure into streaming and collision steps as in the lattice Boltzmann equation (LBE)

method. The streaming step can then be carried out by solving pure linear advection equations in an Eulerian

framework. This offers two significant advantages over previous methods. First, the relationship between the relaxation

parameter and the discretization of the collision term developed from the LBE method is directly applicable to the DBE

method. The resulting DBE collision step remains local and poses no constraint on time step. Second, decoupling of the

advection step from the collision step facilitates implicit discretization of the advection equation on arbitrary meshes.

An implicit unstructured DBE method is constructed based on this strategy and is evaluated using several test cases of

flow over a backward-facing step, lid-driven cavity flow, and flow past a circular cylinder. The speedup of convergence

for some cases improves by a factor of about 20.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The conventional lattice Boltzmann equation (LBE) method [1] comprises collision and streaming

steps. In the collision step the particle distribution function is updated at regularly spaced lattice points.

In the streaming step the particle distribution function is shifted perfectly between lattice points, in-

volving neither phase nor amplitude error. This greatly facilitates numerical procedure, but limits shapes
of computational domain due to the coupled space–time discretization of the method. The coupling

could substantially increase computational effort for flows of boundary-layer type and in complex

geometries.
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To overcome the geometric constraint of the LBE method, several discrete Boltzmann equation (DBE)

methods have been proposed [2–6]. They are based on direct discretization of the DBE [7] in space and time

using standard discretization schemes, such as finite difference, finite volume, and finite element methods.

The starting point of these methods is the differential DBE with the k–m relation given as m ¼ kc2s , where k is

the relaxation parameter, m is the kinematic viscosity, and cs is the speed of sound. It should be recognized

that this k–m relation is only valid for the differential form of the DBE to recover the Navier–Stokes

equations. It may not be applied to the difference equations resulting from discretization of the DBE.

Correction to this relation is required to accurately recover the Navier–Stokes equations from various
difference equations. Although the correction of the k–m relation is well known in the conventional LBE

method, it is overlooked in developing the DBE methods. That is, use of the explicit Euler, Crank–Ni-

colson, and implicit Euler methods for the collision term requires different k–m relations.

Since the relationship between the relaxation parameter and the discretization of the collision term is

already established in the LBE method, it is natural to relate the LBE method to the DBE method and

incorporate some advantages of the LBE method into the solution procedure of the DBE. The LBE can be

regarded as a special space–time discretization of the DBE along characteristics and comprises streaming

and collision steps. The streaming step can be interpreted as moving particle distribution functions along
characteristics between nodes, and is viewed as an Lagrangian description of the advection of fluid par-

ticles. As for the collision step, explicit and implicit schemes have no effect on the overall performance of the

method if a proper relaxation parameter is used. As a rule, discretization of the collision term and the

choice of the relaxation parameter are such that the overall scheme is second-order accurate in space and

time.

From an Eulerian point of view, the aforementioned streaming step is equivalent to solving a pure linear

advection equation for the field of particle distribution function. Thus if the solution procedure of the DBE

is also split into the two steps, the advection equation in principle can be solved by any second-order
accurate scheme on arbitrary meshes. The treatment of the collision then remains identical to that of the

LBE method. This strategy offers two significant advantages over the previous DBE methods. First, the

relationship between the relaxation parameter and the discretization of the collision term developed from

the LBE method is directly applicable to the DBE method. The resulting DBE collision step also inherits

the feature of localization as in the LBE method. Second, decoupling of the advection step from the col-

lision step in the DBE method allows implicit discretization of the advection equation on unstructured

meshes in a simple fashion.

In this paper, we present the above strategy for solving the DBE and investigate the following questions.
First, what is the correct k–m relation for the popular h method having second-order accuracy in the DBE?

h ¼ 0, 0.5, and 1 correspond to the explicit Euler, Crank–Nicolson, and implicit Euler methods. Second,

what are the stability properties of these methods? Third, how can one improve the stability of the DBE

method and use much larger Courant–Friedrichs–Lewy (CFL) numbers than unity and time step sizes?

Fourth, what is the relationship between the present scheme and several previous DBE methods? Fifth,

what is the appropriate boundary condition for the present implicit scheme? On these bases, an implicit

unstructured DBE method is constructed to demonstrate numerically the features of the new solution

procedure.
The paper is organized as follows. In Section 2, we derive a general k–m relation and elucidate the

concepts that the new DBE method is based upon. A new boundary condition for the current method is

presented. Section 3 begins with a linear stability analysis of the collision term treated by the h method. We

then compare the current DBE method with other existing methods. In Section 4, we apply the implicit

Taylor–Galerkin finite element method [8,9] to the pure advection equation to achieve larger time step on

either nonuniform or unstructured meshes. In Section 5, several test cases of flow over a backward-facing

step, lid-driven cavity flow, and flow past a circular cylinder are considered and compared with benchmark

data. Concluding remarks are made in Section 6.
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2. Eularian description of the LBE

The DBE [7] with the Bhatnagar–Gross–Krook (BGK) collision operator [10] reads

ofa

ot
þ ea � $fa ¼ � 1

k
ðfa � f eq

a Þ; ð1Þ

where fa is the single-particle distribution function, ea is the discrete microscopic velocity, $fa is the gra-
dient of fa, k is the relaxation parameter of collision, and f eq

a is the equilibrium distribution function ob-

tained by Taylor expanding Maxwell–Boltzmann distribution function up to (u � u). If a nine-velocity LBE

model on a square lattice is used, the discrete velocity ea is expressed as

ea ¼
ð0; 0Þ; a ¼ 0;

ðcos ha; sin haÞ; ha ¼ ða � 1Þp=4; a ¼ 1; 3; 5; 7;ffiffiffi
2

p
ðcos ha; sin haÞ; ha ¼ ða � 1Þp=4; a ¼ 2; 4; 6; 8:

8<
: ð2Þ

The equilibrium distribution function f eq
a takes the form.

f eq
a ¼ waq 1

�
þ 3ea � uþ

9

2
ðea � uÞ2 �

3

2
ðu � uÞ

�
ð3Þ

with the weights w0 ¼ 4=9, w1 ¼ w3 ¼ w5 ¼ w7 ¼ 1=9, and w2 ¼ w4 ¼ w6 ¼ w8 ¼ 1=36 [11]. The macro-

scopic density q and the velocity vector u are related to the distribution function by

X8
a¼0

f eq
a ¼

X8
a¼0

fa ¼ q;
X8
a¼1

eaf eq
a ¼

X8
a¼1

eafa ¼ qu: ð4Þ

The pressure can be calculated from p ¼ c2sq with the speed of sound cs ¼ 1=
ffiffiffi
3

p
and the kinematic viscosity

of fluid is m ¼ kc2s . Mach (Ma) number is defined as U=cs, where U is the characteristic velocity of the

system.

2.1. Lattice Boltzmann equation

Let ~xxðtÞ denote the trajectory of the particle. Eq. (1) then can be written as

D
Dt

fað~xxðtÞ; tÞ ¼ � 1

k
fað~xxðtÞ; tÞ
h

� f eq
a ð~xxðtÞ; tÞ

i
; ð5Þ

where D=Dt � o=ot þ ea � $ is the Lagrangian derivative along characteristics.

Suppose that the solution at the time tn is known. To compute the solution at the time tnþ1, we discretize

Eq. (5) along characteristics using the h method [12].

fa ~xxðtnþ1Þ; tnþ1


 �
� fa ~xxðtnÞ; tn


 �
¼ � hc

Dt
k

fa ~xxðtnþ1Þ; tnþ1


 �h
� f eq

a ~xxðtnþ1Þ; tnþ1


 �i
� ð1� hcÞ

Dt
k

fa ~xxðtnÞ; tn

 �h

� f eq
a ~xxðtnÞ; tn

 �i

; ð6Þ

where tnþ1 ¼ tn þ Dt, ~xxðtnþ1Þ ¼ ~xxðtnÞ þ Dtea, and hc 2 ½0; 1�. According to accuracy analysis of an ordinary

differential equation, hc must be set to 0.5 for second-order accuracy (i.e., the Crank–Nicolson method). In

the LBE method, one can actually choose any value of hc 2 ½0; 1� while retaining second-order accuracy as
long as the relaxation parameter satisfies

m ¼ k=Dtð � 0:5þ hcÞc2sDt: ð7Þ
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As shown in Appendix A, the principal truncation error OðDtÞ in the Chapman–Enskog expansion of

Eq. (6) for recovering the Navier–Stokes equations is gone if Eq. (7) is satisfied. It is well known in the

conventional LBE, viz. Eq. (6) with hc ¼ 0, that satisfaction of Eq. (7) warrants second-order temporal

accuracy. Nevertheless, the implicit treatment of the collision term with hc 6¼ 0 should also satisfy the above

constraint, but being overlooked. Hereafter, we call the schemes using hc ¼ 0 collision-explicit (CE), and

those with 0 < hc 6 1 collision-implicit (CI). The stability properties of the CE and CI schemes will be

discussed later.

To solve the LBE Eq. (6), we regroup fa at the tnþ1 time level on one side and fa at tn on the other, and
split the solution procedure into the following steps.

• Pre-streaming collision step

f̂fað~xxðtnÞ; tnÞ ¼ fað~xxðtnÞ; tnÞ � ð1� hcÞ
Dt
k

fað~xxðtnÞ; tnÞ
h

� f eq
a ð~xxðtnÞ; tnÞ

i
: ð8Þ

• Streaming step

f̂fað~xxðtnþ1Þ; tnþ1Þ ¼ f̂fað~xxðtnÞ; tnÞ: ð9Þ

• Post-streaming collision step

f̂fað~xxðtnþ1Þ; tnþ1Þ ¼ fað~xxðtnþ1Þ; tnþ1Þ þ hc

Dt
k

fað~xxðtnþ1Þ; tnþ1Þ
h

� f eq
a ð~xxðtnþ1Þ; tnþ1Þ

i
: ð10Þ

Eq. (10) can be readily rearranged as

fað~xxðtnþ1Þ; tnþ1Þ ¼ f̂fað~xxðtnþ1Þ; tnþ1Þ
h

þ hc

Dt
k
f eq
a ð~xxðtnþ1Þ; tnþ1Þ

��
1
h

þ hc

Dt
k

�
: ð11Þ

The macroscopic density and velocities used in calculation of f eq
a in Eq. (11) are obtained by taking mo-

ments of f̂fa at tnþ1.

q ¼
X8
a¼0

f̂fa; qu ¼
X8
a¼1

eaf̂fa: ð12Þ

In practice, it is computationally efficient to combine the pre-streaming collision and the post-streaming

collision steps as in [13].

2.2. Eulerian description of streaming

In the conventional LBE method the grid points coincide with lattice points and the streaming step
expressed by Eq. (9) becomes a perfect shift. The streaming step can be regarded as a Lagrangian approach

in that a group of particles represented by the particle distribution function move along characteristics. The

perfect shift poses no stability and accuracy issues because it involves neither phase nor amplitude error

(known as neutral stability). The CFL number for perfect shift equals unity, which couples grid distance

and time step. As a result, large time step is achieved at the expense of spatial resolution.

The Lagrangian description of the LBE given by Eqs. (8)–(10) can alternatively be expressed in an

Eulerian framework shown below.

• Pre-streaming collision step

f̂faðx; tnÞ ¼ faðx; tnÞ � ð1� hcÞ
Dt
k

faðx; tnÞ


� f eq
a ðx; tnÞ

�
: ð13Þ
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• Streaming step

of̂fa

ot
þ ea � $f̂fa ¼ 0: ð14Þ

• Post-streaming collision step

f̂fa x; tnþ1ð Þ ¼ fa x; tnþ1ð Þ þ hc

Dt
k

fa x; tnþ1ð Þ


� f eq
a x; tnþ1ð Þ

�
: ð15Þ

Here x is defined at grid points not necessarily lining up along characteristics. The above streaming step Eq.

(14) can be solved virtually by any second-order accurate scheme suited for the pure advection equation,

e.g., the Lax–Wendroff-type schemes, to replace the perfect shift in the conventional LBE method. As

shown in Appendix A, use of a second-order time accurate scheme for the streaming step is essential in

recovering the Navier–Stokes equations to the second-order accuracy in time. The stability limit then is

determined by the scheme applied to Eq. (14). Because of the Eulerian nature of Eq. (14), the space and

time discretizations are decoupled, allowing control of time step irrespective of spatial resolution and
geometric shape of the problem.

2.3. Boundary condition

In the solution procedure described by Eqs. (13)–(15), only the streaming step requires boundary con-

ditions because there is no spatial derivative of fa in the two collision steps. The streaming step given by Eq.

(14) is hyperbolic and therefore, boundary conditions must be provided if ea � n < 0 where n is a unit vector

outward normal to the local boundary surface. On the other hand, if ea � n > 0, boundary conditions are

not necessary so that either one-sided difference or simple extrapolation scheme suffices. Suppose f̂faðxÞ is to
be evaluated at the domain boundary point x and ea � n < 0 at x. If f̂fbðxÞ moves in the opposite direction of

f̂faðxÞ, i.e., eb ¼ �ea, and eb � n > 0, the boundary condition for f̂faðxÞ can be specified through f̂fbðxÞ, or
alternatively, through fbðxÞ and f eq

b ðxÞ.
We shall start with the bounce-back rule of the nonequilibrium distribution proposed by He et al. [14]. It

takes the form of

fa

�
� f eq

a

�
� fb



� f eq

b

�
¼ 0: ð16Þ

The discussion on the physical meaning of Eq. (16) can be found in [14]. This boundary condition is of

second-order accuracy. Since the only variable in the streaming step Eq. (14) is f̂fa, a variant of the boundary

condition Eq. (16) in terms of f̂fa and f̂fb is proposed.

f̂f nþ1
a



� f̂f n

a

�
� f̂f nþ1

b



� f̂f n

b

�
¼ 0: ð17Þ

This boundary condition recovers Eq. (16) in the incompressible limit as shown below. It has several

features, including second-order accuracy, easy implementation for implicit schemes, and strong coupling

between f̂fa and f̂fb at the boundary nodes. Replacing f̂fa and f̂fb in Eq. (17) by Eqs. (13) and (15) yields

f nþ1
a

�
� f n

a

�
þ hc

Dt
k

f nþ1
a

�
� f eq;nþ1

a

�
þ ð1� hcÞ

Dt
k

f n
a

�
� f eq;n

a

�
� f nþ1

b



� f n

b

�
� hc

Dt
k

f nþ1
b



� f eq;nþ1

b

�
� ð1� hcÞ

Dt
k

f n
b



� f eq;n

b

�
¼ 0: ð18Þ
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Use of the relation Eq. (16) leads to

f eq;nþ1
a



� f eq;nþ1

b

�
� f eq;n

a



� f eq;n

b

�
þ hc

Dt
k

f nþ1
a

�
� f eq;nþ1

a

�
� hc

Dt
k

f nþ1
b



� f eq;nþ1

b

�
þ ð1� hcÞ

Dt
k

f n
a

�
� f eq;n

a

�
� ð1� hcÞ

Dt
k

f n
b



� f eq;n

b

�
¼ 0: ð19Þ

Due to the symmetry of the model, we can use Eq. (3) to simplify the first two terms in the brackets to

signðeaÞ6wa qnþ1
�

� qn
�
U; ð20Þ

where U is the velocity prescribed at boundaries. Usually the density variation in time is very small on the

order of Ma2. Thus in the incompressible limit, Eq. (19) recovers the bounce-back rule of the nonequi-

librium distribution. If the incompressible LBE model [15] is used instead, Eq. (20) exactly becomes zero

and the proposed boundary condition is identical to the bounce-back rule of the nonequilibrium distri-

bution. In any case, boundary conditions for the macroscopic variables, such as velocities and density, must

be provided for evaluation of the equilibrium distribution function.

It is noteworthy that even without imposing the above boundary condition at the nodes where ea � n < 0,

one-sided difference [3,6] works moderately well. The reason might be that the original DBE is not a pure
advection equation but an advection equation with the collision term, whose diffusive effect tends to sta-

bilize the scheme. The stability of the one-sided difference approach alone, however, deteriorates as the Re
number increases.

3. Comparison with other methods

3.1. Time-step constraints for CI/CE schemes

In order to compare with other schemes, we shall first examine the stability properties of the collision

term. For simplicity, let us consider a one-dimensional ordinary differential equation for the collision step

to illustrate that proper discretization of the collision term poses no constraint on time step. It will then lead

to the conclusion that a larger time step or CFL number could be used if a more stable method is used to

solve the advection equation in the streaming step.

A simple one-dimensional model equation for the collision reads

dfa

dt
¼ � 1

k
fa þ

1

k
f eq
a : ð21Þ

The equilibrium distribution function f eq
a poses challenges in stability analysis of this equation due to its

nonlinear nature. There are two ways to handle it. First, linearization of various form is applied to the

nonlinear term as in [16]. Second, time splitting Eq. (21) again permits to analyze the stability of the first

term on the right-hand side of the equation. This is equivalent to treating the f eq
a term as a source term and

assuming its weak dependence on fa. We adopt this approach for the following analysis. Analogous to the

analysis of a strictly autonomous system, the stability primarily depends on the transient, homogeneous
part of the solution which satisfies

dfa

dt
¼ � 1

k
fa: ð22Þ

As indicated in [12], the linear stability condition thus derived is only a necessary one, requiring numerical

experiments for validation. With this in mind, we discretize Eq. (22) using the h method to obtain

f nþ1
a � f n

a ¼ �Dthc

k
f nþ1
a � Dtð1� hcÞ

k
f n
a ð23Þ
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with hc 2 ½0; 1�. This is easily rearranged to give

f nþ1
a ¼ 1� Dtð1� hcÞ=k

1þ Dthc=k

� �
f n
a ; ð24Þ

where the term in the square brackets is known as an amplification factor. Numerical stability requires the
amplitude of the factor less than or equal to unity.

1� Dtð1� hcÞ=k
1þ Dthc=k

����
����6 1: ð25Þ

Recall that Eq. (7) must be satisfied to recover the Navier–Stokes equations to second-order accuracy in

time. Substitution of Eq. (7) into the amplification factor gives

1� Dtð1� hcÞ=k
1þ Dthc=k

����
���� ¼ 1� ð1�hcÞ

m=c2sDtþ0:5�hc

1þ hc
m=c2sDtþ0:5�hc

�����
����� ¼

m
c2sDt

� 0:5

m
c2sDt

þ 0:5

�����
����� < 1: ð26Þ

Two immediate conclusions can be drawn from this result. First, the transient solution to the model

equation for the collision is unconditionally stable for any values of hc. That is, both the CE and CI schemes
based on the h method are unconditionally stable if Eq. (7) is satisfied. Second, oscillatory solution may be

produced as the amplification factor approaches negative unity [17]. This occurs when the kinematic vis-

cosity m becomes small at high Reynolds (Re) number or the time step becomes large.

3.2. Comparisons of different schemes

We next apply the Lax–Wendroff scheme to approximate Eq. (14) and compare it with other methods.

f̂f nþ1
a � f̂f n

a

Dt
¼ �ear

of̂f n
a

oxr
þ Dt

2
eas

o

oxs
ear

o

oxr
f̂f n
a : ð27Þ

The Chapman–Enskog expansion of the scheme along with the collision steps leads to the Navier–Stokes

equations (see Appendix A). By combining the collision and streaming steps, we obtain

f nþ1
a � f n

a ¼ �Dt ear
of n

a

oxr

�
þ ð1� hcÞ

k
fa

�
� f eq

a

�n þ hc

k
fa

�
� f eq

a

�nþ1

�
þ Dt2eas

o

oxs

1

2
ear

of n
a

oxr

�

þ ð1� hcÞ
k

fa

�
� f eq

a

�n�� Dt3

2

ð1� hcÞ
k

eas
o

oxs
ear

o

oxr
fa

��
� f eq

a

�n�
: ð28Þ

For comparison with other methods, we choose hc ¼ 0, 0.5, and 1. They correspond to the explicit Euler,

Crank–Nicolson, and implicit Euler discretization of the collision step, respectively.

3.2.1. Explicit Euler method

For hc ¼ 0, Eq. (28) is the Lax–Wendroff counterpart of the conventional LBE.

f nþ1
a � f n

a ¼ � Dt ear
of n

a

oxr

�
þ 1

k
fa

�
� f eq

a

�n�þ Dt2eas
o

oxs

1

2
ear

of n
a

oxr

�
þ 1

k
fa

�
� f eq

a

�n�

� Dt3

2

1

k
eas

o

oxs
ear

o

oxr
fa

��
� f eq

a

�n�
: ð29Þ

The last term on the right-hand side is apparently proportional to Dt3 but it is still OðDt2Þ since k is OðDtÞ
for small viscosity (i.e., k ¼ m=c2s þ 0:5Dt). Thus it cannot be dropped from the formulation.
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The Lax–Wendroff LBE method applied in the 1-D characteristic direction has been proposed by

McNamara et al. [18] to stabilize the thermal LBE method. Later, it is known to eliminate staggered in-

variants of the conventional LBE method [19]. In two-dimensional Cartesian and curvilinear coordinates,

He et al. [20,21] used the second-order upwind interpolation after the streaming step in their interpolation-

supplemented LBE method.

3.2.2. Crank–Nicolson method

For hc ¼ 0:5, Eq. (28) reduces to

f nþ1
a � f n

a ¼ � Dt ear
of n

a

oxr

�
þ 1

2k
fa

�
� f eq

a

�n þ 1

2k
fa

�
� f eq

a

�nþ1

�
þ Dt2eas

o

oxs

1

2
ear

of n
a

oxr

�
þ 1

2k
fa

�
� f eq

a

�n�

� Dt3

2

1

2k
eas

o

oxs
ear

o

oxr
fa

��
� f eq

a

�n�
: ð30Þ

This equation differs from the modified equation in [6] only by the last term on the right-hand side.

However, this term is OðDt3Þ because k ¼ m=c2s is of Oð1Þ, and is negligible as compared with other terms.

Cao et al. [2] and Teng et al. [22] used the second-order Runge–Kutta time-stepping scheme for the DBE

(RK2-DBE hereafter). The second-order central difference and the total variation diminishing spatial
discretization were used for the advection term, respectively. In their methods, the collision term was

treated as an explicit source term and the relationship between the relaxation parameter and the kinematic

viscosity was given as k ¼ m=c2s . In two-step form their schemes can be written as

• Predictor

f nþ1=2
a � f n

a ¼ �Dt
2

ear
of n

a

oxr

�
þ 1

k
fa

�
� f eq

a

�n�
: ð31Þ

• Corrector

f nþ1
a � f n

a ¼ �Dt ear
of nþ1=2

a

oxr

�
þ 1

k
fa

�
� f eq

a

�nþ1=2

�
: ð32Þ

Simply put, it can be rearranged in one-step form.

f nþ1
a � f n

a ¼ �Dt ear
of n

a

oxr

�
þ 1

k
fa

�
� f eq

a

�nþ1=2

�
þ Dt2

2
eas

o

oxs
ear

of n
a

oxr

�
þ 1

k
fa

�
� f eq

a

�n�
: ð33Þ

Comparison with Eq. (30) shows that the OðDt3Þ term is absent in Eq. (33) and the collision term of Eq. (33)

is evaluated explicitly in the predictor step at the tnþ1=2 time level. Most importantly, the stability property

of the scheme is totally changed as illustrated below.

Following the analysis in Section 3.1 that leads to Eq. (25), we apply the second-order Runge–Kutta

method to Eq. (22).

f nþ1
a � f n

a ¼ �Dt
k
f n
a þ Dt2

2k2
f n
a : ð34Þ

It is instructive to compare this equation with Eq. (23) obtained by the h method. The stability of the

scheme based on the amplitude of amplification factor requires

1

���� � Dt
k
þ Dt2

2k2

����6 1; ð35Þ
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which easily leads to

Dt < 2k ¼ 2m=c2s : ð36Þ

This indicates that the time step is severely restricted as the Re number increases. To overcome this stability

limit, one may apply the Runge–Kutta time-stepping to the pure advection equation Eq. (14) and apply the

h method to the collision steps with the correct k–m relation Eq. (7). However, the second-order Runge–
Kutta method together with central space difference is known to be unconditionally unstable for pure

advection problems. It is noteworthy that the Runge–Kutta central space discretization of the pure ad-

vection equation differs from the Lax–Wendroff one only in the approximation of the second derivative

term. The former uses a larger computational stencil than the latter.

3.2.3. Implicit Euler method

For hc ¼ 1, Eq. (28) reduces to

f nþ1
a � f n

a ¼ �Dt ear
of n

a

oxr

�
þ 1

k
fa

�
� f eq

a

�nþ1

�
þ Dt2

2
eas

o

oxs
ear

of n
a

oxr
: ð37Þ

Spatial gradients associated with the collision term disappear. This makes it attractive when direct dis-

cretization of the DBE is considered. The appropriate k–m relation for this scheme is k ¼ m=c2s � 0:5Dt, i.e.
Eq. (7) with hc ¼ 1.

In their finite difference LBE method, Mei and Shyy [3] evaluated the collision term at the tnþ1 time level

using the implicit Euler method and the second-order extrapolation of f eq
a to enhance stability, while they

treated the advection term using the explicit Euler method. k ¼ m=c2s was used as in most of the DBE

methods. The semi-discretized form of their method can be written as

f nþ1
a � f n

a ¼ �Dt ear
of n

a

oxr

�
þ 1

k
fa

�
� f eq

a

�nþ1

�
: ð38Þ

The absence of the second derivative term in Eq. (38) makes the scheme only first-order accurate in time.

The Chapman–Enskog analysis (see Appendix B) shows that Eq. (38) recovers the physically proper Na-

vier–Stokes equations only at steady state because the first-order truncation error is time-dependent. At

steady state, this time-dependent term disappears and consequently there is no such first-order term left that

requires correction through modification of the k–m relation. Therefore, k ¼ m=c2s might be a good choice for
this first-order scheme. In general, not all the first-order schemes can recover the physically proper Navier–

Stokes equations at steady state and the error caused by an inappropriate k–m relation becomes significant

at high Re number and for large time step.

4. Implicit Taylor–Galerkin approximation

Among numerous discretization methods, we apply the implicit Taylor–Galerkin finite element method
[8,9] to solve the pure advection equation (14). The finite element method permits geometric flexibility and

the implicit scheme enables the use of large time step. The Taylor–Galerkin method is the Lax–Wendroff

method [23] in the context of the finite element. Temporally second-order accurate Taylor–Galerkin ap-

proximation of the pure advection equation Eq. (14) starts from

f̂f nþ1
a � f̂f n

a

Dt
¼ �ear

of̂f n
a

oxr
þ Dt

2
eas

o

oxs
ear

o

oxr
haf̂f

nþ1
a


�
þ ð1� haÞf̂f n

a

��
; ð39Þ
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where the advection term is evaluated at the time tn, while the second derivative terms can be evaluated

anytime between tn and tnþ1. Eq. (39) is unconditionally stable for 0:56 ha 6 1 and conditionally stable for

06 ha < 0:5. As above, we call Eq. (39) advection-explicit (AE) scheme for ha ¼ 0 and advection-implicit

(AI) scheme for 0 < ha 6 1. While the CI scheme has no advantage over the CE scheme in terms of stability

and time step, the AI scheme can indeed allow larger time step and is more stable than the AE scheme. Here

we choose ha ¼ 0:5 for better phase and amplitude results as well as unconditional stability [8,9].

We now apply the standard Galerkin finite element method to Eq. (39). Suppose that the domain X is

discretized into an appropriate collection of finite elements. The Galerkin approximation is to find an
approximate solution of the following form in a finite dimensional subspace Hh of the Sobolev space on the

spatial domain X.

f̂f ðhÞ
a ¼ NT f̂fa; ð40Þ

where NT ¼ fN 1;N 2; . . . ;Nneg is a (1� ne) vector of interpolation functions of the element Xe, the super-

script ð�ÞT denotes the transpose operation, and ne is the number of nodal points in an element. f̂fa is a

(ne � 1) vector of redefined nodal particle distribution functions.

Application of the Galerkin approximation to Eq. (39) with ha ¼ 0:5 yields

M f̂fnþ1
a



� f̂fna

�
¼ �DtCa f̂f

n
a þ

Dt2

2
Da

f̂fnþ1
a þ f̂fna

2

 !
; ð41Þ

where (ne � ne) matrices M, Ca, and Da are defined as

M ¼
Z

Xe

NNT dX; ð42Þ

Ca ¼
Z

Xe

Near
oNT

oxr
dX; ð43Þ

Da ¼
Z

Xe

Neareas
o2NT

oxsoxr
dX: ð44Þ

The second derivative in Eq. (44) is integrated by parts and is converted by the divergence theorem ofGauss to

Da ¼ �
Z

Xe

oN

oxs
easear

oNT

oxr
dX þ

Z
Ce

Nnseasear
oNT

oxr
dC; ð45Þ

where Ce denotes the surface of elements and ns is the unit vector outward normal to Ce. The second term

on the right-hand side is a surface integral and cancels out in the interior of the domain X.

The integrand of Eq. (45) requires evaluation of the spatial derivatives that are discontinuous across

linear elements. To avoid evaluating the spatial derivatives, we replace the spatial derivatives with the time

derivatives through the identity

f̂f nþ1
a � f̂f n

a

Dt
¼ �ear

o

oxr

f̂f nþ1
a þ f̂f n

a

2

 !
þOðDt2Þ: ð46Þ

The surface integral then takes the form

Z
Ce

Nnseasear
oNT

oxr

f̂fnþ1
a þ f̂fna

2

 !
dC ¼ �

Z
Ce

NnseasN
T f̂fnþ1

a � f̂fna
Dt

 !
dC þOðDt2Þ: ð47Þ
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Eq. (41) now is recast as

M

�
þ Dt2

4
~DDa �

Dt
2
Sa

�
f̂fnþ1
a



� f̂fna

�
¼ �DtCa f̂f

n
a �

Dt2

2
~DDa f̂f

n
a; ð48Þ

where (ne � ne) matrix ~DDa and (2� 2) matrix Sa are defined as

~DDa ¼
Z

Xe

oN

oxs
easear

oNT

oxr
dX; ð49Þ

Sa ¼
Z

Ce

NnseasN
T dC: ð50Þ

Since the matrices on the left-hand side of Eq. (48) is symmetric positive definite, it might be solved by the

conjugate gradient (CG) solver using the solution from the previous time step as an initial guess. Up to this

level, one-sided difference is applied to the boundary nodes, but it might render the solution unstable.

Suppose that fa and fb represent particle distribution functions at domain boundaries with ea � n < 0 and

eb � n > 0. It is found that strong coupling between fa and fb through the boundary condition Eq. (17)

greatly stabilizes the scheme. Without this boundary condition, fa and fb are weakly and indirectly coupled
through macroscopic variables. Since fa and fb must be solved simultaneously to ensure strong coupling

between them, we apply one-sided difference to fb, and Eq. (17) to fa which propagates into the domain.

This makes the matrices on the left-hand side of Eq. (48) slightly asymmetric so that the CG solver is no

longer applicable. We use the bi-conjugate gradient stabilized (BiCGSTAB) solver [24] instead. As Dt
becomes smaller, the matrices on the left-hand side becomes closer to the well-conditioned mass matrix M

and the BiCGSTAB solver converges with very small number of iterations. With larger Dt, the BiCGSTAB

solver needs more iterations for convergence because of the additional diffusion matrix ~DDa whose magni-

tude increases with Dt2. The least squares finite element approximation [25] or the Galerkin finite element
approximation with balancing tensor diffusivity/trapezoidal rule (BTD/TR) [26] of Eq. (14) also results in

Eq. (48).

The boundary condition introduced above is quite general. For instance, the finite difference ap-

proach in conjunction with the one-sided difference and the above boundary condition for the boundary

nodes can be easily implemented. Implementation of the implicit Lax–Wendroff type methods is sum-

marized in [12].

5. Numerical test

Results of numerical experiments in this section are to illustrate three points. First, with the current

formulation both the CE and CI schemes are equally stable and the AI scheme allows larger time step and

enhances stability as compared with the AE scheme. Second, improper choice of the relaxation parameter

changes the physical viscosity and thus, must be avoided. Third, the proposed boundary condition works

well with the current formulation and is of second-order accuracy. We consider flow over a backward-

facing step, lid-driven cavity flow, and steady and unsteady flow past a circular cylinder. All simulations
presented here use hc ¼ 0:5 but any value of hc in [0,1] yields identical results. The CFL number in the

following section is defined by

CFL ¼ jeajDt
Dxmin

; ð51Þ

where Dxmin is the minimum grid spacing in the direction of ea.
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5.1. Flow over a backward-facing step

The flow separation in the backward-facing step caused by the sudden change in geometry can be found

in many applications. It serves to create a recirculation region or a sudden change in pressure. Here we

consider laminar flow over a backward-facing step. The Re number based on mean inlet velocity and step

height h ranges from 50 to 800. We will discuss the stability of different advection schemes and the effect of

the relaxation parameter on the accuracy.

The computational domain for the simulation is shown in Fig. 1. The expansion number defined as the

ratio of the main channel height to the step height is fixed at 2. The channel length is 30h and the inlet

channel length is 5h. The number of grid points is 11,075 and the total number of elements is 10,840. Due to
sudden expansion and different velocity profiles at the inlet, predictions with inlet channel are usually

different from those with no inlet channel. The Ma number based on the maximum inlet velocity is 0.15 and

the initial density is given as q ¼ 1:0. Eq. (17) is used as the boundary condition for both stationary walls

and the inlet where parabolic velocity profile is prescribed. At the outflow boundary, the Neumann con-

dition is imposed for velocities and one-sided difference is used for f̂fa.

Fig. 2 shows themaximum allowableCFL number of the AE/CI scheme and the RK2-DBE scheme of Cao

et al. [2] at different Re numbers. hc ¼ 0:5 is used in the AE/CI scheme in order to compare with the RK2-DBE

scheme. With this choice of the hc value, the relaxation parameter is given by m ¼ kc2s . In the low Re number
regime (Re < 100), the maximum CFL number of the RK2-DBE scheme is then governed by the formal

stability limit of the second-order Galerkin Runge–Kutta scheme for the pure advection equation, which is

1=
ffiffiffi
3

p
[27]. As the Re number increases, the maximum allowable CFL number closely follows the trend

predicted by Eq. (36). It is clear that very small time step must be used at higher Re number. If time step is too

small, not only does it take much time for convergence but the solution is more likely to become oscillatory

though more time-accurate [8]. It is because the effect of stabilization arising from the second derivatives,

whose coefficient is proportional to Dt2, diminishes with decreasing Dt. In contrast, the maximum allowable

CFL number for the AE/CI scheme, which is also about 1=
ffiffiffi
3

p
[9,28], is much greater than that of the RK2-

DBE scheme especially at high Re number, and only slightly decreases with increasing Re number. The AI/CI

scheme generally permits much larger CFL number than the AE/CI scheme in moderate Re number range.

For very high Re number flows, small time step must be used anyway to resolve fine scale flow features.

Fig. 1. Backward-facing step geometry (not to scale).
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Next we shall examine the effect of the relaxation parameter on the accuracy of solution. Recall that sat-

isfaction of Eq. (7) is a necessity to correctly recover theNavier–Stokes equations. For instance, use of m ¼ kc2s
requires hc ¼ 0:5. If the implicit Eulermethod is applied to the collision term (hc ¼ 1), the right form of the k–m
relation is m ¼ kc2s þ 0:5c2sDt. If m ¼ kc2s is still used, it will result inOðDtÞ error whose effect becomes significant

as the Re number increases. Fig. 3 shows the reattachment length xr as a function of the Re number. The re-

laxation parameter is calculated from m ¼ kc2s for all cases, but different values of hc andCFLnumbers are used.

With this k–m relation, the result for hc ¼ 0:5 and CFL ¼ 5 agrees very well with the benchmark solution of

Barton [29], but the results for hc ¼ 1 underpredict the length due to the relaxation parameter calculated from

the incorrect k–m relation. The difference becomes even more evident as the Re number increases. Since the

error is of OðDtÞ, the solutions become much less accurate with increasing CFL number as shown in Fig. 3.

5.2. Lid-driven cavity flow

The lid-driven cavity flow is considered to estimate the accuracy of the current scheme at moderately

high Re number. The Re number is defined by the velocity and length of the top lid. The solutions are
obtained using Ma ¼ 0:15, and the initial density q ¼ 1:0. In order to demonstrate the spatial accuracy,

calculations are performed on three systematically refined uniform meshes (denoted by the subscripts 4h,
2h, and h) with CFL ¼ 1:0. Since the ratio of the mesh size on successive meshes is 2, the order of the

scheme, p, can be estimated from [30]

p ¼
ln /2h�/4h

/h�/2h


 �
ln 2

; ð52Þ

which yields p ¼ 2:1. This confirms the second-order accuracy of the scheme as well as the boundary
condition.

To examine the effect of CFL number on the accuracy, we compare the results of Re ¼ 400 and

Re¼ 5000. 65� 65 nonuniform mesh is used for both cases. Comparison of the profiles of the horizontal

Fig. 2. Maximum allowable CFL number of RK2-DBE and AE/CI schemes with Reynolds number.
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velocity component in the vertical symmetry plane is shown in Fig. 4. At Re ¼ 400, large CFL number effect

is not as apparent as at Re¼ 5000. For instance, the case with CFL ¼ 2 yields nearly the same result as the

cases with CFL ¼ 0:5 and 1 at Re ¼ 400 but slight deviation is observed at Re¼ 5000. With CFL ¼ 8, the
result at Re ¼ 400 also shows some deviation from benchmark result. The simulation at Re¼ 5000 is un-

stable with CFL ¼ 8 due to a large collision coefficient. The pressure contours and the streamlines at

Fig. 3. Reattachment length with Reynolds number (m ¼ kc2s ).

(a) (b)

Fig. 4. Profiles of normalized velocity component u through the geometric center of the cavity at: (a) Re ¼ 400 and (b) Re¼ 5000.

(Ghia et al. [31]).

458 T. Lee, C.-L. Lin / Journal of Computational Physics 185 (2003) 445–471



Re ¼ 400 and 5000 with CFL ¼ 2 are shown in Figs. 5 and 6, respectively. Comparison with those obtained

from the conventional LBE method, e.g., Figs. 1 and 5 in [32], shows good agreement. Nevertheless the

pressure contours in Fig. 5(e) of [32] exhibit oscillatory pattern although a 256� 256 lattice is used. The

appearance of this pattern is consistent with the discussion following Eq. (26) about the amplification factor
approaching )1. Velocity vectors for CFL ¼ 2:0 near singularities at upper corners are also shown in Fig. 7.

5.3. Flow past a circular cylinder

We consider laminar steady and unsteady flow past a circular cylinder on unstructured mesh. Figs. 8 and

9 show an unstructured hybrid mesh setup with r0 ¼ 0:5, which is the same for all the cases. Bi-linear

quadrilateral elements are used near the cylinder wall, and linear triangular elements are used elsewhere. It

is because quadrilateral elements are better suited for boundary-layer type flow and triangular elements are
more favorable for mesh clustering and coarsening. The number of grid points on the cylinder wall is 128

(a) (b)

Fig. 5. Pressure contours of the cavity flow at: (a) Re ¼ 400 and (b) Re¼ 5000.

(a) (b)

Fig. 6. Streamlines of the cavity flow at: (a) Re ¼ 400 and (b) Re¼ 5000.
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Fig. 8. Hybrid unstructured mesh (far view).

(a)

(b)

Fig. 7. Velocity vectors near singularities at the upper left and right corners at: (a) Re ¼ 400 and (b) Re¼ 5000.
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and the total number of grid points and elements are 12,726 and 22,190, respectively. Also, the Ma number

based on the inlet velocity is 0.1.

5.3.1. Low Reynolds number flow

Here, Re ¼ 20 and Re ¼ 100 are considered in the simulation in order to show how AI scheme can in-

crease time step and enhance stability. A uniform velocity u ¼ ðu1; 0Þ is specified along the domain pe-

rimeter as physical boundary conditions and zero velocities are imposed at the cylinder surface. The Stokes

solution is used as initial velocities and q ¼ 1:0 is used for an initial density.
Five cases with the same physical configuration but different CFL numbers 0.5, 1, 10, 50, and 100 are

tested. At CFL ¼ 0:5, the AE/CI scheme rather than the AI/CI scheme is used for comparison. The CFL

condition of the AE/CI scheme is given as CFL6 1=
ffiffiffi
3

p
[9,28]. Again, the treatment of the collision term

shows no effect on the result.

Flow behind a circular cylinder remains symmetric up to Re ¼ ð2u1r0Þ=m � 40, where u1 is the free

stream velocity and r0 is the cylinder radius. At the Re number of 20, steady recirculation bubbles are

attached to the cylinder surface. From Table 1 we can compare quantitatively the wake length (L=2r0) and
the drag coefficient (CD) obtained by the current scheme with some benchmark data. The drag coefficient is
calculated by

CD ¼ 1

qu21r0

Z
S � ndC; ð53Þ

where n is the outward normal vector on the cylinder wall and

Fig. 9. Hybrid unstructured mesh (close view).
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S ¼ �pIþ qm $u



þ ð$uÞT
�

ð54Þ

is the stress tensor and I is an identify matrix. As shown in Table 1, the wake length and the drag coefficient

at large CFL numbers are in good agreement with those of the previous studies although the wake length at
CFL ¼ 100 is slightly underpredicted (about 5.6% less than that of the CFL ¼ 0:5 case).

The CPU time required for convergence on the HP 9000/785 workstation is presented in Table 2. It is the

time when the number of time steps � the CFL number reaches 50,000. The diagonal preconditioner is used

for the cases of CFL ¼ 0:5 and 1, while the SSOR preconditioner [35] is used for the cases of CFL ¼ 10, 50,

and 100. The SSOR preconditioner works better for high CFL number cases. No special optimization is

performed but substantial speedup (a factor of about 20) is observed as the CFL number increases. The

speedup is not a linear function of the CFL number because the BiCGSTAB solver requires more iterations

per time step with larger Dt. Fig. 10 displays the streamlines and the contours of pressure and vorticity for
the CFL ¼ 50 case. A pair of stationary recirculating bubbles develops behind the cylinder, being similar to

Fig. 3 in [21].

At Re ¼ 100, unsteady vortex shedding occurs behind the cylinder. The Strouhal (St) frequency and the

maximum drag and lift coefficients at CFL ¼ 1 and 10 are displayed in Table 3. They are in good agreement

with the data obtained by Beaudan [36]. The difference between maximum CD (CL) values for CFL ¼ 1 and

10 is only about 1.5% (3%). Fig. 11 displays the streamlines and the contours of pressure and vorticity for

the CFL ¼ 10 case. It should be cautioned that temporal truncation errors increase with time step so that it

is not recommended to use too large time step for unsteady problems from the sake of accuracy.

Table 2

CPU time for convergence for flow past a circular cylinder at Re ¼ 20

Schemes (CFL number) CPU time (s)a Speedupb Dt=k

AE/CI (CFL ¼ 0:5) 37,393 1.0 0.33

AI/CI (CFL ¼ 1) 16,523 2.3 0.65

AI/CI (CFL ¼ 10) 2427 15.4 6.52

AI/CI (CFL ¼ 50) 2104 17.8 32.62

AI/CI (CFL ¼ 100) 1744 21.4 65.24

aCPU time required for convergence.
b Speedup over AE/CI scheme with CFL ¼ 0:5.

Table 1

Comparison of the wake length and the drag coefficient for flow past a circular cylinder at Re ¼ 20

Authors L=2r0 CD

Nieuwstadt and Kellera (1973) 1.786 2.053

Fornbergb (1980) 1.82 2.000

He and Doolenc (1997) 1.842 2.152

Mei and Shyyd (1997) 1.804 –

Present AE/CI (CFL ¼ 0:5)e 1.849 2.086

Present AI/CI (CFL ¼ 1)e 1.834 2.106

Present AI/CI (CFL ¼ 10)e 1.844 2.092

Present AI/CI (CFL ¼ 50)e 1.786 2.109

Present AI/CI (CFL ¼ 100)e 1.746 2.052

aNumerical simulation of Navier–Stokes equations [33].
bNumerical simulation of Navier–Stokes equations [34].
c ISLBE with 181� 241 grid points [21].
d FDLBM with 129� 64 grid points [3].
eUnstructured mesh with 12,726 grid points.
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5.3.2. Impulsively started high Reynolds number flow

As demonstrated in the previous vortex shedding case, a large time step or a large CFL number dete-

riorates solution accuracy because the present scheme is of second-order accuracy in time. The degradation

of solution accuracy would manifest itself more significantly for time dependent problems. Therefore, it is

worth examining the solution accuracy at high Reynolds number with large time step for time dependent

flows. We study flow past a circular cylinder impulsively started from rest and observe flow patterns and

solution accuracy at different times expressed in units of r0=u1. Boundary conditions are the same as above.

Fig. 10. (a) Streamlines, (b) pressure contours, and (c) vorticity contours obtained from the AI/CI scheme at Re ¼ 20 and CFL ¼ 50.

Table 3

Computed Strouhal number and lift and drag maxima at Re ¼ 100

Author (CFL number) St maxCL maxCD

Present AI/CI (CFL ¼ 1) 0.1639 0.331 1.358

Present AI/CI (CFL ¼ 10) 0.1632 0.321 1.338

Beaudan [36] 0.164 0.342 1.365
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Typical flow patterns at Re ¼ 550 are described as the bulge phenomenon and isolated secondary eddy
[37]. First, near the wall and half-way between the stagnation and the separation points, the streamlines

deviate from the cylinder wall causing a bulge. This bulge then evolves into a closed secondary eddy, which

rotates in the opposite direction to the main eddy. Flow at Re¼ 3000 is typified by the so-called phe-

nomenon a [37]. When the secondary eddy is fully developed, its boundary touches the boundary of the

main recirculating zone. This splits the main eddy into two parts and isolates the region of the wake next to

the separation point. Finally, another secondary eddy is formed.

Time evolutions of the streamlines are shown in Fig. 12 for Re ¼ 550 and Fig. 13 for Re¼ 3000. In each

plot, upper (lower) half shows small (large) time step case with CFL ¼ 0:2 (2.0). The wake length of the
higher CFL number case grows faster than that of the lower CFL number case and the difference becomes

more evident at higher Re number. The bulge phenomenon and isolated secondary eddy can be observed

in Figs. 12(a) and (b), respectively. Phenomenon a is also observed in Fig. 13. Time variations of the wake

lengths with different CFL numbers are compared with experimental [37] and numerical [21] results in

Fig. 11. (a)Streamlines, (b) pressure contours, and (c) vorticity contours obtained from the AI/CIscheme atscA100 andmgBA10.
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Fig. 14. At Re ¼ 550, all cases agree well with the experimental data. With Re¼ 3000, only the case with

small CFL ¼ 0:2 accurately predicts initial wake lengths. The number of grid points in the present cases is

12,726, whereas that of [21] shown in Fig. 14 is 58,081 (241� 241).

6. Concluding remarks

In the paper, we derived the LBE by discretizing the DBE along characteristics. The LBE possesses two

appealing features. One is a local nature of the collision step. It permits easy treatment of the collision term

in either explicit or implicit way if the relationship between the relaxation time and the kinematic viscosity is

properly described. The other feature is that the streaming can be viewed as solving a pure advection

equation in an Eulerian framework. By recognizing this point, virtually any second-order accurate scheme

for solving the pure advection equation on either structured or unstructured mesh can be used to substitute
the perfect shift (or streaming) on uniform lattice. Compared with other DBE methods, this approach is

much more stable, allowing large time step. In this paper, we considered the Lax–Wendroff type advection

Fig. 12. Time evolutions of streamlines at Re ¼ 550 for CFL ¼ 0:2 and CFL ¼ 2:0. (a) t ¼ 1, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower

half); (b) t ¼ 3, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower half); (c) t ¼ 5, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower half).
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scheme and showed that it leads to the proper Navier–Stokes equations through the Chapman–Enskog

expansion when combined with the collision step.

We conducted several test cases, including flow over a backward-facing step, lid-driven cavity flow, and

flow past a circular cylinder. From the results of flow over a backward-facing step with different time

stepping methods for the collision term and different CFL numbers, we confirmed that the use of the re-
laxation parameter consistent with the time stepping method is indeed crucial. Improper choice of the

relaxation parameter would result in overly diffusive solutions. By examining lid-driven cavity flow at

different Re numbers with various CFL numbers, we found that large time step could affect accuracy of

solution and stability of the scheme for high Re number flow. Five different CFL numbers (0.5, 1, 10, 50,

and 100) were used for comparison of convergence rate and accuracy of flow past a circular cylinder at low

Re number. The new scheme was found to improve significantly the convergence rate by a factor of more

than 20 with reasonable accuracy. Impulsively started flows past a circular cylinder at moderate and high

Re numbers were also investigated. Accuracy for transient flows is much more sensitive to time step than
that for steady flows.

Fig. 13. Time evolutions of streamlines at Re¼ 3000 for CFL ¼ 0:2 and CFL ¼ 2:0. (a) t ¼ 1, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower

half); (b) t ¼ 3, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower half); (c) t ¼ 5, CFL ¼ 0:2 (upper half), CFL ¼ 2:0 (lower half).
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Appendix A

The Chapman–Enskog expansion of the second-order time accurate scheme Eq. (28) is considered to

identify the kinematic viscosity given in Eq. (25) [32]. Eq. (28) is rearranged to give

f nþ1
a � f n

a þ Dtear
of n

a

oxr
� Dt2

2
eas

o

oxs
ear

of n
a

oxr
¼ � ð1� hcÞ

s
1

�
� Dtear

o

oxr
þ Dt2

2
eas

o

oxs
ear

o

oxr

�
fa

�
� f eq

a

�n
� hc

s
fa

�
� f eq

a

�nþ1 þOðDt3Þ; ðA:1Þ

where s ¼ k=Dt. If all variables of Eq. (A.1) are defined at ~xxþ Dtea, Eq. (A.1) is rewritten in vector form as

follows.

fað~xxþ Dtea; t þ DtÞ � fað~xxþ Dtea; tÞ þ Dtðea � $Þfað~xxþ Dtea; tÞ �
Dt2

2
ea � $ð Þ2fað~xxþ Dtea; tÞ

¼ � ð1� hcÞ
s

fa

�
� f eq

a

�����
ð~xx;tÞ

� hc

s
fa

�
� f eq

a

�����
~xxþDtea;tþDtð Þ

þOðDt3Þ

¼ � 1

s
fa

�
� f eq

a

�����
ð~xxþhcDtea;tþhcDtÞ

þOðDt3Þ: ðA:2Þ

Fig. 14. Time evolutions of the wake lengths at Re ¼ 550 and Re¼ 3000 for CFL ¼ 0:2, 1.0, and 2.0. The experimental data [37] are

denoted by triangle and square symbols.
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Taylor-series expansion of Eq. (A.2) around (~xxþ hcDtea; t þ hcDt) at which the collision term is defined is

required for analysis. For reference,

fað~xxþ Dtea; t þ DtÞ ¼ fað~xxþ hcDtea; t þ hcDtÞ þ ð1� hcÞDt
o

ot

�
þ ea � $ð Þ

�
fað~xxþ hcDtea; t þ hcDtÞ

þ ð1� hcÞ2Dt2
2

o

ot

�
þ ea � $ð Þ

�2
fað~xxþ hcDtea; t þ hcDtÞ þOðDt3Þ; ðA:3Þ

and

fað~xxþ Dtea; tÞ ¼ fað~xxþ hcDtea; t þ hcDtÞ � Dt hc

o

ot

�
� ð1� hcÞ ea � $ð Þ

�
fað~xxþ hcDtea; t þ hcDtÞ

þ Dt2

2
hc

o

ot

�
� ð1� hcÞ ea � $

� ��2
fað~xx:þ hcDtea; t þ hcDtÞ þOðDt3Þ: ðA:4Þ

Substituting Eq. (A.2) with the above relations and retaining terms up to OðDt2Þ result in

Dt
o

ot

�
þ ea � $ð Þ

�
fa þ ð1� 2hcÞ

Dt2

2

o

ot

�
þ ea � $ð Þ

�2
fa ¼ � 1

s
fa

�
� f eq

a

�
: ðA:5Þ

Identical result is obtained if we begin with the LBE Eq. (6) instead of Eq. (A.1) for expansion. If hc ¼ 0:5,
Eq. (A.5) becomes the DBE Eq. (1) up to second-order accuracy. As shown below, for any other value of

hc 2 ½0; 1�, Eq. (A.5) can still generate a second-order accurate solution by choosing an appropriate s value.
We consider the long-wavelength and low-frequency limits such that Dt can be regarded as small pa-

rameters compared with the macroscopic characteristic scales. It leads to the following relations

o

ot
¼ o

ot0
þ Dt

o

ot1
þ � � � ðA:6Þ

and

fa ¼ f eq
a þ Dtf ð1Þ

a þ Dt2f ð2Þ
a þ � � � : ðA:7Þ

We obtain the equation to the order of Dt by substituting Eqs. (A.6) and (A.7) into Eq. (A.5)

o

ot0

�
þ ea � $ð Þ

�
f eq
a ¼ � 1

s
f ð1Þ
a ; ðA:8Þ

and the equation of order Dt2

of eq
a

ot1
þ o

ot0

�
þ ea � $ð Þ

�
2s � 1þ 2hc

2s

� �
f ð1Þ
a ¼ � 1

s
f ð2Þ
a : ðA:9Þ

The hydrodynamic quantities of fluid density qðx; tÞ and velocities uðx; tÞ are defined as

q ¼
X

a

f eq
a ;

qu ¼
X

a

eaf eq
a :

ðA:10Þ

After some algebraic manipulation, we finally obtain the governing equations.

oq
ot

þ $ � qu ¼ 0; ðA:11Þ
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oðquÞ
ot

þ $ � Pð0Þ�
þ Pð1Þ� ¼ 0; ðA:12Þ

where the momentum flux tensors are defined by

Pð0Þ ¼
X

a

eaeaf eq
a ¼ pIþ quu;

Pð1Þ ¼ 2s � 1þ 2hc

2s

� �X
a

eaeaf ð1Þ
a ¼ m

Dt
q rrus½ þ rsur�;

ðA:13Þ

where p ¼ csq is the pressure and m ¼ ðs � 0:5þ hcÞc2sDt is the kinematic viscosity. The macroscopic

equations are

oq
ot

þ $ � qu ¼ 0;

q
ou

ot

�
þ u � $u

�
¼ �$p þ $ � qm$uð Þ½ þ $qm$ � u�:

ðA:14Þ

Nonzero ha will lead to the same result because it acts as a third-order correction.

Appendix B

The Chapman–Enskog expansion of the first-order time accurate scheme Eq. (38) is considered to

identify the first-order truncation error term. Eq. (38) is shown again for reference.

f nþ1
a � f n

a þ Dtear
of n

a

oxr
¼ � 1

s
fa

�
� f eq

a

�nþ1
: ðB:1Þ

The same procedure used in Appendix A leads to

Dt
o

ot

�
þ ea � $ð Þ

�
fa �

Dt2

2

o2

ot2

�
þ 2

o

ot
ea � $ð Þ

�
fa ¼ � 1

s
fa

�
� f eq

a

�
: ðB:2Þ

The second derivative term in Eq. (B.2) looks different from the correct form in Eq. (A.5). Thus this

scheme is only first-order accurate in time. Rearranging the arithmetic operators in the second square

bracket yields

Dt
o

ot

�
þ ea � $ð Þ

�
fa �

Dt2

2

o

ot

�
þ 2 ea � $ð Þ

�
ofa

ot



In Eq. (B.1), the explicit Euler method is applied to the advection term. One might be interested in the

implicit Euler method for large time step. The implicit Euler method results in

Dt
o

ot

�
þ ea � $ð Þ

�
fa �

Dt2

2

o

ot
ofa

ot
¼ � 1

s
fa

�
� f eq

a

�
; ðB:5Þ

which also reduces to Eq. (B.4) at steady state. The rest of the analysis is identical to that of Appendix A.
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